Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species

نویسنده

  • Ryan J. Mailloux
چکیده

Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2(-•)/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2(-•)/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2(-•)/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2(-•)/H2O2. Indeed, low rates of O2(-•)/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2(-•)/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2(-•)/H2O2 with extreme efficiency. Given the importance of O2(-•)/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2(-•)/H2O2 and how O2(-•)/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2(-•)/H2O2 in tandem with their significance in contributing to overall O2(-•)/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2(-•)/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2(-•)/H2O2 genesis from these sites are discussed. Finally, the current methodologies utilized for measuring O2(-•)/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Comparative stepwise pattern of reactive oxygen species production during in vitro development of fertilized and nuclear transferred goat embryos

Objective A unique feature of embryo metabolism is production of reactive oxygen species (ROS). It is well established that during in vitro culture, ROS levels increase over normal ranges observed for embryos developed in vivo. This study evaluates and compares the stepwise pattern of ROS production during in vitro development of reconstructed goat embryos produced by zona-free method of somati...

متن کامل

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

مروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )

    ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2).  Autophagy is a catabolic pathway for degradation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015